The zero modes and zero resonances of massless Dirac operators

نویسندگان

  • Yoshimi Saitō
  • Tomio Umeda
  • T. Umeda
چکیده

The zero modes and zero resonances of the Dirac operator H = α ·D+Q(x) are discussed, where α = (α1, α2, α3) is the triple of 4× 4 Dirac matrices, D = (1/i)∇x, and Q(x) = `

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Asymptotic Limits of Zero Modes of Massless Dirac Operators

Asymptotic behaviors of zero modes of the massless Dirac operator H = α ·D+Q(x) are discussed, where α = (α1, α2, α3) is the triple of 4×4 Dirac matrices, D = 1i ∇x, and Q(x) = ( qjk(x) ) is a 4×4 Hermitian matrix-valued function with |qjk(x)| ≤ C〈x〉 −ρ, ρ > 1. We shall show that for every zero mode f , the asymptotic limit of |x|f(x) as |x| → +∞ exists. The limit is expressed in terms of an in...

متن کامل

Dirac-sobolev Inequalities and Estimates for the Zero Modes of Massless Dirac Operators

The paper analyses the decay of any zero modes that might exist for a massless Dirac operator H := α·(1/i)∇+Q, where Q is 4 × 4-matrix-valued and of order O(|x|−1) at infinity. The approach is based on inversion with respect to the unit sphere in R and establishing embedding theorems for Dirac-Sobolev spaces of spinors f which are such that f and Hf lie in ( L(R) )4 , 1 ≤ p < ∞.

متن کامل

The Zero Modes and the Zero Resonances of Dirac Operators

The zero modes and the zero resonances of the Dirac operator H = α · D + Q(x) are discussed, where α = (α1, α2, α3) is the triple of 4× 4 Dirac matrices, D = 1 i ∇x, and Q(x) = ` qjk(x) ́ is a 4× 4 Hermitian matrix-valued function with |qjk(x)| ≤ C〈x〉, ρ > 1. We shall show that every zero mode f(x) is continuous on R and decays at infinity with the decay rate |x| if 1 < ρ < 3, |x| log |x| if ρ =...

متن کامل

The Index of a Ginsparg-Wilson Dirac Operator

A novel feature of a Ginsparg-Wilson lattice Dirac operator is discussed. Unlike the Dirac operator for massless fermions in the continuum, this lattice Dirac operator does not possess topological zero modes for any topologically-nontrivial background gauge fields, even though it is exponentially-local, doublers-free, and reproduces correct axial anomaly for topologically-trivial gauge configur...

متن کامل

ar X iv : h ep - t h / 99 10 13 9 v 1 1 8 O ct 1 99 9 February 1 , 2008 Degeneracy of zero modes of the Dirac operator in three dimensions

One of the key properties of Dirac operators is the possibility of a degeneracy of zero modes. For the Abelian Dirac operator in three dimensions the question whether such multiple zero modes may exist has remained unanswered until now. Here we prove that the feature of zero mode degeneracy indeed occurs for the Abelian Dirac operator in three dimensions, by explicitly constructing a class of D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008